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Abstract
Here we propose a phase-field approach to investigate the influence of
convection on peritectic growth as well as the heterogeneous nucleation kinetics
of peritectic systems. For this purpose we derive a phase-field model for
peritectic growth taking into account fluid flow in the melt, which is convergent
to the underlying sharp interface problem in the thin interface limit (Karma and
Rappel 1996 Phys. Rev. E 53 R3017). Moreover, we employ our new phase-
field model to study the heterogeneous nucleation kinetics of peritectic material
systems. Our approach is based on a similar approach towards homogeneous
nucleation in Gránásy et al (2003 Interface and Transport Dynamics (Springer
Lecture Notes in Computational Science and Engineering vol 32) ed Emmerich
et al (Berlin: Springer) p 190). We applied our model successfully to extend
the nucleation rate predicted by classical nucleation theory for an additional
morphological term relevant for peritectic growth. Further applications to
understand the mechanisms and consequences of heterogeneous nucleation
kinetics in more detail are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In modelling nucleation it is essential to realize that the solid–liquid interface is known to
extend to several molecular layers. This has successively been indicated by experiments [3],
computer simulations [4], and statistical mechanical treatments based on the density functional
theory [5]. The need to pay particular attention to this diffuse interface results from the fact that
for nucleation the typical size of critical fluctuations is comparable to the physical thickness of
the interface. The success of such careful treatment can be seen in modern nucleation theories
for homogeneous nucleation, which do consider the molecular scale diffuseness of the interface.
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Figure 1. Heterogeneous nucleation of a ‘spherical cap’-shaped second phase β on a planar initial
phase α according to the ‘spherical cap’ model. Figure following [9].

These theories could remove the many orders of magnitude difference seen between nucleation
rates from the classical sharp interface approach and experiment [6].

In heterogeneous nucleation we face an even more complex situation, since the principal
degrees of freedom of the process are larger than in homogeneous nucleation: first of all, each
phase can nucleate separately. Moreover, several phases can nucleate jointly, i.e. approximately
at the same space and time. Finally one phase can nucleate on top of the other.

Here we are particularly interested in peritectic material systems. Even though many
industrially important metallic alloy systems as well as ceramics are peritectics, much less
is known about microstructural pattern formation in peritectic growth [7] than, for example,
in eutectic growth. Similarly to a eutectic system, the phase diagram of a peritectic system
contains a point—the peritectic point with peritectic temperature Tp—at which two different
solid phases, the parent (primary) and peritectic (secondary) phases, coexist with a liquid of
higher composition than either solid phase. Above Tp, the parent phase is stable and the
peritectic phase is meta-stable, whereas below Tp, the opposite is true. In the following, we
will consider C to be the concentration of the impurity and Tm the melting point of the pure
phase. For a figure displaying a respective schematic phase diagram of a peritectic material
system, the reader is refered to [8], for example.

In such peritectic material systems it is particularly relevant to understand the nucleation
of the peritectic phase on top of the properitectic phase in detail, since this is the nucleation
process yielding the stationary growth morphology. For this specific nucleation process the
precise configuration of the properitectic phase, i.e. its free energy on the one hand and its
morphology on the other [10], should contribute to the precise nucleation rate.

Nevertheless, the well-established spherical cap model for the nucleation of a new phase
β on a planar front of initial phase α predicts the following nucleation rate:

I = I0e−�F∗/kB T , (1)

where I0 is a constant factor (with dimension equal to the number of nucleations per unit
volume and unit time) and �F∗ is the activation energy for heterogeneous nucleation.
Assuming the critical nucleus of phase β to be spherical (see figure 1), the interfacial tensions
γαL , γαβ and γβL balance each other, enclosing a contact angle θ if the following condition is
fulfilled:

γαL = γαβ + γβL cos θ. (2)

�F∗ is then given, respectively, in two and three dimensions by

�F∗ =

⎧
⎪⎪⎪⎨
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γ 2
βL

�FB
× θ2

θ − (1/2) sin 2θ
, 2D

γ 3
βL
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× 16π(2 + cos θ)(1 − cos θ)2
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, 3D.
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Here �FB is the difference between the bulk free energies of the peritectic phase and of the
liquid phase.

Equation (3) determines the classical local nucleation rate and hence the probability
per unit time of a nucleus forming as a function of the local temperature at the solid–
liquid interface. Thus morphological and energetic contributions to (3) resulting from the
properitectic microstructure as discussed in [10] are neglected classically. In the following,
we derive for the first time a phase-field model approach for peritectic growth, taking into
account hydrodynamics in the molten phase, which is capable of treating this open issue. The
way we proceed here is different from the further scientific advance of the authors of [1] in
the sense that we analyse the nucleation rate belonging to a heterogeneous nucleation event.
In contrast, the authors of [1] extended their own work to investigate several stochastically
initialized homogeneous nucleation events of different phases and their subsequent growth in
multi-phase systems [11].

Here we will describe our new approach to investigate the rate of a nucleation event of a
second phase on top of a first one in detail in section 2. Also, in sections 2 and 3 we investigate
microstructure growth in a peritectic system under the influence of hydrodynamic convection
in the melt. We will then report on first numerical investigations of the nucleation kinetics
in such peritectic material systems, in particular on a morphological contribution from the
properitectic phase to (3), in section 3. Moreover, we will discuss the relation of our results
to classical nucleation theory in section 3. Finally, we will conclude with a discussion of the
general impact of our new approach for peritectic materials under the influence of convection,
as well as an outlook.

2. A quantitative phase-field model for peritectic growth taking into account
hydrodynamic convection in the molten phase

The starting point of our phase-field modelling approach for heterogeneous nucleation is the
free-energy functional of a representative volume of the investigated material system. This
free-energy functional is given by the volume integral

F =
∫

V
f dV , (4)

with the free-energy density defined as

f = W (θ)2

2

∑

i

(∇ pi)
2 +

∑

i

pi
2(1 − pi)

2

+ λ̃

[
1
2

[

c −
∑

i

Ai(T )gi( �p)

]2

+
∑

i

Bi(T )gi( �p)

]

, (5)

where W (θ) = W0(1 + ε4 cos 4θ) depends on the orientation of the interface, with θ =
arctan ∂y pi/∂x pi , ε4 being the measure of the anisotropy and λ̃ being a constant. The function
gi couples the phase-field to the concentration and the temperature,

gi = pi
2

4
{15(1 − pi)[1 + pi − (pk − p j)

2] + pi(9pi
2 − 5)}.

The coefficients Ai(T ) and Bi(T ) define the equilibrium phase diagram [2],

Ai (T ) = ci ∓ (ki − 1)U, AL = 0,

Bi(T ) = ∓AiU BL = 0,

where U = (Tp − T )/(|mi |�C) is the dimensionless undercooling, ki are the partition
coefficients, and AL , BL are the corresponding liquid coefficients.
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Figure 2. Investigation of the peritectic transformation under the influence of convection. The
dark circle indicates the properitectic phase and the light structure the peritectic phase, which is
nucleating on top of the properitectic phase. Arrows are vectors indicating the velocity of the
hydrodynamic field in the molten phase.

We use three phase fields pi ∈ [0, 1], where
∑3

i=1 pi = 1. The pi label the properitectic,
the peritectic and the liquid phase, respectively, i.e. i = α (for the properitectic phase), i = β

(for the peritectic phase) and i = L (for the liquid phase); denote �p ≡ (pα, pβ, pL).
Their dynamics are derived from the free-energy functional F :

∂ pi

∂ t
= 1

τ

δF
δpi

,

where τ is a relaxation time.
The concentration field is given by:

∂c

∂ t
+ pLv · �∇c − �∇ ·

(

M(pi) �∇ δF
δc

− �JAT

)

= 0, (6)

where M(pi) is a mobility and �JAT is the anti-trapping term. The scaled concentration field
is given by ci = (Ci − Cp)/�C , where Cp is the liquidus concentration at Tp. The model
equations so far—except for the anisotropic form of W , which we apply here in the context of
these equations for the first time—were developed initially in [2]. In the following, we extend
these equations to also model hydrodynamic transport in the liquid phase. This requires their
coupling to an additional hydrodynamic field equation, which we realized as follows:

∂ pLv
∂ t

= −pLv · �∇v − pL �∇p + 1

Re
∇2 pLv + M2

1 . (7)

Equation (7) is a modified Navier–Stokes equation, where Re = ρU
ν

. M2
1 is a dissipative

interfacial force per unit volume and is modelled as in [20].
To our knowledge, this is the first phase-field model convergent to the underlying sharp

interface problem in the thin interface limit. The respective asymptotic analysis is summarized
in [21]. This model allows us for the first time to investigate quantitatively the peritectic
transformation under the influence of convection. A representative evolution is depicted in
figure 2, where time runs from the upper left picture to the upper right and the lower left to
the lower right. The light circle indicates the properitectic phase and the dark structure the
peritectic phase, which is nucleating on top of the properitectic phase. Comparing peritectic
growth with and without convection, we find that hydrodynamic transport in the melt enhances
the growth process considerably. This relation between melt flow and solidification dynamics
is summarized in figure 3, where two pictures of growing microstructures are given at the same
set of parameters, except that the right microstructure is subject to flow whereas, to the left,
growth proceeds in a purely diffusion limited way. These results are in qualitative agreement
with experimental investigation of the peritectic material system Nd–Fe–B in [14].
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Figure 3. Comparison of peritectic growth with and without convection.

3. Investigating heterogeneous nucleation in peritectic materials via the phase-field
method

In solidification experiments the final microstructure is determined by both the peritectic growth
dynamics as well as the microstructure growth kinetics. Therefore, for a full quantitative
comparison with experiments, it is essential to analyse the heterogeneous nucleation kinetics of
the above peritectic material system as well. For such a system, a nucleation event arises as a
critical fluctuation, which is a non-trivial time-independent solution of the governing equations
that we can derive from the underlying free-energy functional. Our derivation follows the
standard variational procedure of phase-field theory (for a review, see e.g. [15–17]). Solving the
equations (4)–(7) numerically under boundary conditions that prescribe bulk liquid properties
far from the fluctuations (pi → 1, and c → c∞ at the outer domain boundaries) and zero field-
gradients at the centre of the respective phases, one obtains the free energy of the nucleation
event as

�F∗ = F − F0. (8)

Here F is obtained by evaluating numerically the integration over F after having the time-
independent solutions inserted, while F0 is the free energy of the initial liquid. The zero field
gradients arise naturally due to the stationarity of the problem if the ‘seed’ phase is chosen to
be large enough1. Based on (8), the homogeneous nucleation rate is calculated as

I = I0 exp{−�F∗/kT }, (9)

where the nucleation factor I0 of the classical kinetic approach is used, which proved consistent
with experiments [18].

As introduced in section 1, in a peritectic material sample it is particularly relevant to
understand the nucleation of the peritectic phase on top of the properitectic phase in detail,
since this is the nucleation process yielding the stationary growth morphology. As demonstrated
previously via analytical predictions and Monte Carlo studies (see e.g. [10, 13]), for this specific
nucleation process the precise configuration of the properitectic phase, i.e. its free energy on
the one hand and its morphology on the other, should contribute to the precise nucleation rate.
This, as well as experimental evidence for deviations from classical nucleation theory in the
system Nd–Fe–B [19], motivated us to study the effect of two morphological features of the
properitectic phase on the nucleation rate of the peritectic phase, namely (I) the effect of facets
and (II) the effect of its radius. In this context, the underlying facetted shape of the properitectic

1 Thermodynamically, this is always possible. The functioning of the underlying relaxation procedure does not depend
on the volume of the properitectic phase as such, but on the relative volume of the properitectic phase to the volume
that we choose as the initialization for the peritectic phase. This has to be tuned close to a ratio to be expected from the
position in the phase diagram to ensure convergence within the limit of a reasonable number of variations.
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Figure 4. Schematic sketch to elucidate the initialization of the relaxation procedure and subsequent
calculation to determine the heterogeneous nucleation rate via the phase-field method for the case
of an anisotropic ‘seed’.

Figure 5. Possible morphologies of the critical ‘two-phase’ nucleus for an anisotropic and an
isotropic underlying properitectic ‘seed’, respectively. The parameters used in the phase-field model
equations to result in these mophologies were: mα = −3.73 K/at.%, mβ = −0.6 K/at.%,
Tp = 1790.4 K, D = 5.0 × 10−9 m2 s−1 and the scaled concentrations cα = −2.16 and
cβ = −1.16.

phase is initialized as a ‘seed’ for the peritectic phase to nucleate on, as depicted in figure 4.
Figure 4 reveals, too, that in our investigations the peritectic phase is nucleating at the corner
of the properitectic phase. To calculate the nucleation rate of the peritectic phase on top of this
facetted seed, it is then—as described above—essential to determine the corresponding time-
independent configuration, at which neither of the two phases will grow, and at which also
all diffuse fields are fully relaxed, i.e. stationary. To find this state, we vary the radius of the
properitectic phase systematically, keeping the position of its centre relative to the properitetic
phase constant. For each variation, we carry out the relaxation procedure. There is exactly one
radius, where stationarity can be achieved, namely the radius of the critical nucleus. The precise
morphology of the critical ‘two-phase’ nucleus, in particular the ratio of the volume of the two
phases, depends—as indicated above—on the precise thermodynamic state of the system under
investigation, as can easily be understood from the phase diagram. Such possible heterogeneous
nuclei for the parameter settings given underneath are depicted in figure 5 for an anisotropic
‘seed’ and an isotropic underlying properitectic ‘seed’, respectively. The anisotropic form
W (θ) = W0(1 + ε4 cos 4θ) for W (θ) allows us to obtain this state for the anisotropic case.
However, we are aware that, for a simulation of the full dynamic microstructure evolution into
a facetted shape, more elaborate anisotropic forms of W (θ) are required, as, for example, given
in [22].
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Figure 6. Comparison of the nucleation rate on top of a facetted nucleus to the one on top of an
unfacetted nucleus.

1.0E–02

1.0E–01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

 0.01  0.02  0.03  0.04  0.05  0.06  0.07

I

undercooling

Nucleation rate 

Radii=50
Radii=40
Radii=30
Radii=20

Figure 7. Comparison of the nucleation rate on unfacetted nuclei of different radii.

In figures 6 and 7 we summarize our results. As you can see from figure 6, the less
facetted the properitectic phase, the larger the nucleation probability for a peritectic nucleation
on top of it. For the contribution resulting from the radius of the properitectic phase, a similar
relation is true: the larger the radius of the properitectic phase, the larger the probability
of a peritectic nucleation on top of it. Both findings are in qualitative agreement with the
following atomistic picture: unfacetted nuclei offer a great number of surface kinks for
nucleation. This holds for nuclei of small radii, as well. However, small radius nuclei are
also subject to large surface diffusion due to kink flow [12]. This overrides the first effect
such that the overall nucleation rate turns out to be smaller for smaller radii. Moreover, these
findings are in qualitative agreement with [10] and thus provide a first qualitative validation
for our new approach towards heterogeneous nucleation. However, it should be noted that
the atomistic picture is just given for a common-sense estimation of what our model should
do. In the continuum picture underlying our investigations, the differences in the various
curves arise due to the fact that the total surface energy tied to the diffuse surface area of
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the properitectic nucleus depends on its morphology. Thus the latter naturally has an impact
on the nucleation rate, just as indicated experimentally. This can be analysed in more detail
by making use of the phase-field profiles at the stationary point [21]. The benefit of using our
continuum model approach rather than atomistic models for the proposed studies is twofold:
(1) the approach is computationally considerably more efficient, i.e. it will easily allow for
subsequent 3D simulation and simulations of several nuclei competing in the course of initial
growth. This also implies that the timescales that can be accessed are larger than for atomistic
simulations. Only due to this does simulation of nucleation as well as initial growth become
possible. (2) Moreover, it can easily be extended to additional physical mechanisms influencing
the nucleation process as, for example, elastic ones [17] or anisotropies of the solid–liquid
interfacial free energy [21].

4. Discussion and outlook

To summarize, in this paper we have introduced a new phase-field modelling approach for
peritectic growth, taking into account hydrodynamic transport in the molten phase. We
apply this approach successfully to investigate the influence of melt flow on the peritectic
transformation. Moreover, we employ our model to identify the precise mechanisms of the
heterogeneous nucleation kinetics in a peritectic system, i.e. essentially mechanisms beyond
classical nucleation theory. In this context, it is important to notice that the new features of
our approach to heterogeneous nucleation inherently included are (I) the notion of a diffuse
interface as well as (II) long-range interaction effects due to our continuum field approach
towards the problem. Based on these features, our model can explain differences between
classical nucleation theory and experiments as morphological contributions to the nucleation
rate. Moreover, it compares well with careful statistical studies of the effects of long-range
interactions. In this sense, it poses a valuable new approach towards heterogeneous nucleation
in general, taking into account kinetic, thermodynamic as well as long-range interaction effects,
which still have to be developed further.
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